Xen virtualization on FreeBSD

Roger Pau Monné

Tokyo – March 12, 2015
Goals of this presentation

- Description of Xen.
- A peek into Xen’s new features.
- Recent work done in FreeBSD to improve Xen support.
- Demo of a FreeBSD/Xen Dom0.
Xen Architecture

Control Domain

- device model (qemu)
- toolstack
- Hardware Drivers
- netback blkback
- Paravirtualized (PV) Domain
- netfront blkfront
- Fully Virtualized (HVM) Domain

Xen Hypervisor

Hardware

I/O Devices
CPU
Memory
Paravirtualization

- Virtualization technique developed in the late 90s.
- Designed by:
 - XenoServer research project at Cambridge University.
 - Intel.
 - Microsoft labs.
- x86 instructions behave differently in kernel or user mode, options for virtualization were full software emulation or binary translation.
 - Design a new interface for virtualization.
 - Allow guests to collaborate in virtualization.
 - Provide new interfaces for virtualized guests that allow to reduce the overhead of virtualization.
- The result of this work is what we know today as paravirtualization.
All this changes lead to the following interfaces being paravirtualized:

- Disk and network interfaces
- Interrupts and timers
- Boot directly in the mode the kernel wishes to run (32 or 64 bits)
- Page tables
- Privileged instructions
Full virtualization

- With the introduction of hardware virtualization extensions, Xen is able to run unmodified guests.
- This requires emulated devices, which are handled by Qemu.
- Makes use of nested page tables when available.
- Allows to use PV interfaces if guest has support for them.
The virtualization spectrum

<table>
<thead>
<tr>
<th>VS</th>
<th>Software virtualization</th>
<th>Poor performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH</td>
<td>Hardware virtualization</td>
<td>Room for improvement</td>
</tr>
<tr>
<td>PV</td>
<td>Paravirtualized</td>
<td>Optimal performance</td>
</tr>
</tbody>
</table>

- **HVM**: VS (VH)
- **HVM with PV drivers**: PV (VH)
- **PVHVM**: PV (VH)
- **PV**: PV (PV)
Xen’s new features

- Recent Xen changes:
 - Improved support for running Xen on ARM.
 - New virtualization mode: PVH.
 - As usual, improvements/bugfixes across all components.
Xen on ARM

- Started on 2011, focused on bringing Xen into ARM boards with virtualization extensions.
- Xen 4.5 is the recommended release for Xen on ARM.
- Has support for both 32 and 64bit ARM chips.
- More information can be found at http://www.xenproject.org/developers/teams/arm-hypervisor.html.
New x86 virtualization mode: PVH

- PV in an HVM container.
- PVH should use the best aspects from both PV and HVM:
 - No need for any emulation.
 - Has a "native" MMU from guest point of view.
 - Has access to the same protection levels as bare metal.
- Written by Mukesh Rathor @ Oracle.
- Significant revisions by George Dunlap @ Citrix.
The extended virtualization spectrum

<table>
<thead>
<tr>
<th>VS</th>
<th>Software virtualization</th>
<th>Poor performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH</td>
<td>Hardware virtualization</td>
<td>Room for improvement</td>
</tr>
<tr>
<td>PV</td>
<td>Paravirtualized</td>
<td>Optimal performance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk and network</th>
<th>Interrupts and timers</th>
<th>Emulated motherboard</th>
<th>Privileged instructions and page tables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>VS</th>
<th>VS</th>
<th>VS</th>
<th>VH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVM with PV drivers</td>
<td>PV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVHVM</td>
<td>PV</td>
<td>PV</td>
<td>VS</td>
<td>VH</td>
</tr>
<tr>
<td>PVH</td>
<td>PV</td>
<td>PV</td>
<td>PV</td>
<td>VH</td>
</tr>
<tr>
<td>PV</td>
<td>PV</td>
<td>PV</td>
<td>PV</td>
<td>PV</td>
</tr>
</tbody>
</table>

Tokyo – March 12, 2015

Xen virtualization on FreeBSD
PVH technical overview

- Runs inside of an HVM container.
 - No PV MMU.
 - Runs with normal privilege levels.
- Disable HVM emulated devices.
- Uses PV start sequence.
 - Start with basic paging setup.
- Uses the PV path for several operations:
 - vCPU bringup.
 - PV hypercalls.
 - PV e820 memory map.
- Uses the PVHVM callback mechanism.
FreeBSD 9.x Xen support

- i386 PV port.
- HVM with PV drivers (both i386 and amd64).
 - Xenstore and grant-table implementations.
 - Event channel support.
 - PV Disk and Network front and backends.
 - Suspend and resume.
FreeBSD 10.x Xen support

- PVHVM.
 - Vector callback support.
 - Unified event channel code with the i386 PV port.
 - PV timer.
 - PV IPIs.
 - PV Suspend and resume.
Ongoing work in HEAD

- PVH DomU support.
- PVH Dom0 support.
PVH DomU

- PV entry point into the kernel.
- Wire the PV entry point with the rest of the FreeBSD boot sequence.
- Fetch the e820 memory map from Xen.
- PV console.
- Get rid of the usage of any previously emulated devices (serial console, timers).
- PV vCPU bringup for APs.
- Hardware description comes from xenstore, not ACPI.
PVH Dom0

- Builds on top of DomU PVH support.
- Has access to physical hardware devices.
- Parses ACPI tables and notifies Xen about the underlying hardware.
- Special user-space devices are needed, so the toolstack can interact with Xen.
Architecture overview

Xen Nexus

xenpv bus

PV CPU
grant-table
xenstore
timer
console
privcmd
evtchn

disk0
nic0
control interface

Event channels
Pending work items

- Improve robustness and compatibility of if _xn/xnb (PV nic).
- Add some additional user-space devices to interact with Xen:
 - gntdev: allows user-space applications to map grants.
 - gntalloc: allows user-space applications to share memory using grants.
- Add a FreeBSD Dom0 to the Xen automatic test system (OSSTest).
- Test on different hardware.
Conclusions

- FreeBSD/Xen support is evolving from HVM → PVHVM → PVH.
- Initial FreeBSD PVH Dom0 support committed to HEAD.
- Using Xen allows to provide a fully featured virtualization platform based on FreeBSD.
Thanks

Questions?