Xen virtualization on FreeBSD

Roger Pau Monné

Tokyo - March 12, 2015

- Description of Xen.
- A peek into Xen's new features.
- Recent work done in FreeBSD to improve Xen support.
- Demo of a FreeBSD/Xen Dom0.

Goals O	Xen overview ○●○○○	Xen's new features	FreeBSD/Xen status 000000	Conclusions	
Paravirtualization					

- Virtualization technique developed in the late 90s.
- Designed by:
 - ► XenoServer research project at Cambridge University.
 - ► Intel.
 - Microsoft labs.
- x86 instructions behave differently in kernel or user mode, options for virtualization were full software emulation or binary translation.
 - Design a new interface for virtualization.
 - Allow guests to collaborate in virtualization.
 - Provide new interfaces for virtualized guests that allow to reduce the overhead of virtualization.
- The result of this work is what we know today as paravirtualization.

- All this changes lead to the following interfaces being paravirtualized:
 - Disk and network interfaces
 - Interrupts and timers
 - Boot directly in the mode the kernel wishes to run (32 or 64bits)
 - Page tables
 - Privileged instructions

- With the introduction of hardware virtualization extensions Xen is able to run unmodified guests
- This requires emulated devices, which are handled by Qemu
- Makes use of nested page tables when available.
- Allows to use PV interfaces if guest has support for them.

- Recent Xen changes:
 - Improved support for running Xen on ARM.
 - ► New virtualization mode: PVH.
 - ► As usual, improvements/bugfixes across all components.

- Started on 2011, focused on bringing Xen into ARM boards with virtualization extensions.
- > Xen 4.5 is the recommended release for Xen on ARM.
- ► Has support for both 32 and 64bit ARM chips.
- More information can be found at http://www.xenproject. org/developers/teams/arm-hypervisor.html.

- PV in an HVM container.
- PVH should use the best aspects from both PV and HVM:
 - No need for any emulation.
 - ► Has a "native" MMU from guest point of view.
 - ► Has access to the same protection levels as bare metal.
- Written by Mukesh Rathor @ Oracle.
- Significant revisions by George Dunlap @ Citrix.

HVM	VS	VS	VS	VH
HVM with PV drivers	PV	VS	VS	VH
PVHVM	PV	PV	VS	VH
PVH	PV	PV	PV	VH
PV	PV	PV	PV	PV

- Uses PV start sequence.
 - Start with basic paging setup.
- Uses the PV path for several operations:
 - vCPU bringup.
 - PV hypercalls.
 - PV e820 memory map.
- Uses the PVHVM callback mechanism.

- i386 PV port.
- HVM with PV drivers (both i386 and amd64).
 - Xenstore and grant-table implementations.
 - Event channel support.
 - PV Disk and Network front and backends.
 - Suspend and resume.

- PVHVM.
 - Vector callback support.
 - ► Unified event channel code with the i386 PV port.
 - ► PV timer.
 - PV IPIs.
 - ► PV Suspend and resume.

- PVH DomU support.
- PVH Dom0 support.

- Wire the PV entry point with the rest of the FreeBSD boot sequence.
- Fetch the e820 memory map from Xen.
- PV console.
- Get rid of the usage of any previously emulated devices (serial console, timers).
- PV vCPU bringup for APs.
- Hardware description comes from xenstore, not ACPI.

- Builds on top of DomU PVH support.
- Has access to physical hardware devices.
- Parses ACPI tables and notifies Xen about the underlying hardware.
- Special user-space devices are needed, so the toolstack can interact with Xen.

- Improve robustness and compatibility of if_xn/xnb (PV nic).
- Add some additional user-space devices to interact with Xen:
 - ► gntdev: allows user-space applications to map grants.
 - gntalloc: allows user-space applications to share memory using grants.
- Add a FreeBSD Dom0 to the Xen automatic test system (OSSTest).
- Test on different hardware.

- ▶ FreeBSD/Xen support is evolving from HVM \rightarrow PVHVM \rightarrow PVH.
- Initial FreeBSD PVH Dom0 support committed to HEAD.
- Using Xen allows to provide a fully featured virtualization platform based on FreeBSD.

Thanks Questions?

Tokyo - March 12, 2015