
vmd
Reyk	Flöter

reyk@openbsd.org

About vmd

• “vmd is	a	daemon	responsible	for	the	execution	of	
virtual	machines	(VMs)	on	a	host.”
• vmd(8)	interfaces	with	vmm(4)	in	the	kernel
• It	handles	the	VM	setup,	vCPUs,	exists,	and	device	layer
• vmd(8)	and	vmctl(8)	manage	the	VMs

• We	want	to	provide	complete	functionality	in	base
• Ready	to	use,	built	and	designed	for	OpenBSD
• Focus	on	features	that	we	need
• An	alternative	device	layer	could	be	provided	by	qemu

History	of	vmd

• Mike	Larkin	wrote	vmm(4)	and	the	initial	vmd(8)
• vmd(8)	was	a	simple	but	functional	daemon

• One	parent	process,	the	VMs,	and	a	simple	vmmctl tool
• It	included	the	implementation	of	a	VIRTIO	device	layer

• Disks
• Network	Interfaces
• Virtual	CPUs	(VCPUs)

• I	turned	vmd(8)	into	an	“OpenBSD-style”	daemon:
• Fully	privilege-separated	(privsep)	process	model
• Well-defined	configuration	grammar	(/etc/vm.conf)
• Improved	status	and	control	tool	(vmctl)

vmd

vmctl Control	Tool

• vmctl is	used	to	control	and	monitor	vmd(8)
• Advanced	configuration	is	done	via	vm.conf

• It	implements	sub-commands	with	options
• Unlike	other	ctls in	OpenBSD,	it	does	not	use	CLI-style

• Create	a	4.5	Gigabyte	disk	image,	disk.img:
vmctl create disk –s 4.5G

• Create	a	new	VM	with	512MB	memory:
vmctl start “myvm” –m 512M –i 1 –d disk.img –k /bsd -c

• Terminate	the	VM	”myvm”:
vmctl stop myvm

vm.conf Configuration	File

• A	well-defined	and	human-readable	grammar
• No	need	for	“getopt hell”	and	shell	scripts	calling	vmctl
• Based	on	OpenBSD’s	configuration	parser,	as	used	in

• pf,	bgpd,	relayd,	httpd,	ospfd,	snmpd,	…	and	many	others.
• Supports	macro	variables,	comments	and	includes

• vmd(8)	loads	the	vm.conf on	boot	or	reload
openbsd=“/bsd”
vm “myvm” {

memory 512M
interfaces 1
disk “/var/vmm/myvm.img”
Use the default
kernel $openbsd

}

vmm and	the	VM	Processes

• “sandboxed”	VMs	using	privsep and	pledge
• New	pledge	“vmm”	restricts	allowed	ioctls to	vmm(4)

• The	vmm process	communicates	with	the	kernel
• It	forks	and	monitors	the	VM	processes
• It	receives	devices	(disks,	kernel,	NICs)	from	vmd

if (pledge(“stdio vmm recvfd proc”) == -1)
fatal(“pledge”);

• The	VM	processes	represent	each	virtual	machine:
• Each	process	runs	with	multiple	threads,	one	per	VCPU
• Handles	exits	and	device	I/O	from	vmm(4)	in	the	kernel

if (pledge(“stdio vmm”) == -1)
fatal(“pledge”);

Future	Work	in	vmd

• I‘m	waiting	for	Mike	Larkin‘s	interrupt	controller
• Networking	will	be	much	easier	when	it	is	ready

• Change	the	network	“interfaces”	configuration
• Define	virtual	switches	in	vm.conf
• Assign	VMs	to	virtual	switches
• Integrate	with	upcoming	work	on	switch(4)	/	switchd(8)

• Add	support	for	VM	templates	and	instances
• Support	additional	disk	formats,	eg.	VMX	export
• Enable	it,	enable	full	pledge

