
Introduction to bhyve
Takuya ASADA / @syuu1228

What is bhyve?

What is bhyve?

• bhyve is a hypervisor introduced in FreeBSD	

• Similar to Linux KVM, runs on host OS	

• BSD License	

• Developed by Peter Grehan and Neel Natu

bhyve features
• Required Intel VT-x and EPT (Nehalem or later)  

AMD support in progress	

• Does not support BIOS/UEFI for now  
UEFI support in progress	

• Minimal device emulation support:  
virtio-blk, virtio-net, COM port + α	

• Supported guest OS:  
FreeBSD/amd64, i386, Linux/x86_64, OpenBSD/amd64

How to use it?

kldload vmm.ko	

/usr/sbin/bhyveload -m ${mem} -d ${disk} ${name}	

/usr/sbin/bhyve -c ${cpus} -m ${mem} \ 
-s 0,hostbridge -s 2,virtio-blk,${disk} \  
-s 3,virtio-net,${tap} -s 31,lpc -l com1,stdio vm0

How to run Linux?

• bhyve OS Loader(/usr/sbin/bhyveload) only supports
FreeBSD  
You need another OS Loader to support other OSs	

• grub2-bhyve is the solution	

• It’s modified version grub2, runs on host OS (FreeBSD)	

• Can load Linux and OpenBSD	

• Available in ports & pkg!

Virtualization in general

Difference between container
and hypervisor

• Jail is container

• It’s virtualize OS environment on kernel level	

• bhyve is hypervisor

• It virtualizes whole machine	

• Totally different approach

Container
• Process in jail is just a normal

process for the kernel	

• The kernel do some tricks to
isolate environments between jails	

• Lightweight, less-overhead	

• Share one kernel with all jails  
→ If the kernel panics, all jails  
will die	

• You cannot install another OS  
(No Windows, No Linux!)

jail2jail1

Kernel

Disk
NIC

proc
ess

proc
ess

proc
ess

Hypervisor
• Hypervisor virtualizes a machine	

• From guest OS, it looks like real
hardware	

• Virtual machine is a normal
process for host OS	

• Does not share kernel, it is
completely isolated	

• You can run Full OS inside of
the VM → Windows! Linux!

Kernel

Disk
NIC

Hypervisor

proc
ess

vm1

Kernel

Disk NI
C

proc
ess

vm2

Kernel

Disk NI
C

proc
ess

How hypervisor virtualize
machine?

• To make complete virtual machine, you need to
virtualize following things:	

• CPU	

• Memory (Address Space)	

• I/O

CPU Virtualization:  
Emulate entire CPU?

• Like QEMU	

• You can emulate the entire CPU operation on a normal process	

• Very slow, not a really useful choice for virtualization

QEMU mov dx,3FBh
mov al,128
out dx,al

CPU
emula
tor

run

virtual
device

OS

physica
l device

physic
al
CPU

IO

CPU Virtualization:	

Direct execution?

• You want run guest instructions directly on a real
CPU since you are virtualizing x86 on x86	

• You need to avoid executing some instructions which
modify system global state, or perform I/O (called
sensitive instructions)	

• If you execute these instructions on a real CPU, it
may break host OS state such as directly accessing
a HW device

Perform I/O on VM

• You need to avoid access to real HW from VM	

• Need to prevent execution of the instruction

GuestOS

Virtual CPU
Real Display

outb

Perform IO on VM

• You can trap them by executing in lower privileged mode	

• However, on x86, there are some instructions which are impossible to trap  
because these are nonprivileged instructions

GuestOS

Virtual CPU

outb

Virtual Display

trap!

Software techniques to
virtualize x86

• Binary translation (old VMware): interpret & modify
guest OS’s instructions on-the-fly  
→ Runs fast, but implementation is very complex	

• Paravirtualization (old Xen): Modify guest OS for  
the hypervisor  
→ Runs fast, but is impossible to run unmodified OS’s	

• We want an easier & better solution  
→ HW assisted virtualization!

Hardware assisted
virtualization(Intel VT-x)

• New CPU mode:  
VMX root mode (hypervisor) / VMX non-root mode (guest)	

• If some event needs to emulate in the hypervisor,  
CPU stops guest, exit to hypervisor → VMExit	

• You don’t need complex software techniques 
You don’t have to modify the guest OS

User
(Ring 3)

Kernel
(Ring 0)

User
(Ring 3)

Kernel
(Ring 0)

VMX
root mode

VMX
non-root

mode

VMEntry

VMExit

Memory Virtualization

• If you run guest OS natively, memory address translation become problematic	

• If GuestB loads Page table A, virtual page 1 translate to Host physical page 1 
but you meant Host physical page 5

Process A

1

Process B
1
2

Guest physical memory

2
1

3
4

1 1
2

1 3
2 4

Page table A

Page table B

Guest A

1

1
2

2
1

3
4

1 1
2

1 3
2 4

Host physical memory

2
1

7

3
4
5
6

8

Process A

Process B

Guest physical memoryPage table A

Page table B

Guest B

Shadow Paging

• Trap page table loading/modifying, create “Shadow Page Table”,
tell physical page number to the MMU	

• A software trick that works well, but is slow

1

1
2

2
1

3
4

1 2
2

1 3
2 4

2
1

7

3
4
5
6

8

1 5
2

1 7
2 8

Process A

Process B

Guest physical memory

Page table A

Page table B

Guest A

Host physical memory
Page table A'

Page table B'

Nested Paging (Intel EPT)

• HW assisted memory virtualization!	

• You will have Guest physical : Host physical translation table	

• MMU translates address by two step (Nested)

1

1
2

2
1

3
4

1 2
2

1 3
2 4

2
1

7

3
4
5
6

8

1 5
2 6

EPT A

3 7
4 8

Process A

Process B

Guest physical memory

Page table A

Page table B

Guest A
Host physical memory

I/O Virtualization

• To run unmodified OSs, you’ll need to emulate all
devices what you have on the real hardware	

• SATA, NIC(e1000), USB(ehci), VGA(Cirrus),
Interrupt controller(LAPIC, IO-APIC),
Clock(HPET), COM port…	

• Emulating real devices is not very fast because it
causes lot of VMExits, not ideal for for virtualization

Paravirtual I/O

• Virtual I/O device is designed for VM use	

• Much faster than emulating real devices	

• Required device driver on guest OS	

• De-facto standard: virtio-blk, virtio-net

PCI Device passthrough

• If you attach a real HW device on a VM, you will have a problem with DMA	

• Because the device requires physical address for DMA but the guest OS
doesn’t know the Host physical address	

• Address translator for the devices: IOMMU(Intel VT-d)

• Translates guest physical to host physical using a translation table

Physical memory

2
1

7

3
4
5
6

8

PCI
Devices

DMA!

5 1
6 2
7 3
8 4

IOMMU
translation table

Process A

1

Process B
1
2 Guest physical

memory

2
1

3
4

1 2
2

1 3
2 4

Pagetable A

Pagetable B

Guest A

1 5
2 6

EPT A

3 7
4 8

bhyve internals

How bhyve virtualize machine?

• CPU: HW-assisted virtualization (Intel VT-x)	

• Memory: HW-assisted memory virtualization (Intel
EPT)	

• IO: virtio, PCI passthrough, +α	

• Uses HW assisted features

bhyve overview
• bhyveload: loads 

guest OS	

• bhyve: userland part of
Hypervisor, emulates
devices	

• bhyvectl: a management
tool	

• libvmmapi: userland API	

• vmm.ko: kernel part of
Hypervisor

FreeBSD kernel

bhyveload bhyve

/dev/vmm/${vm_name} (vmm.ko)

Guest
kernel

1. Create VM instance,
load guest kernel

2. Run VM instace

H
D

N
I
C

C
onsole

Disk image
tap device

stdin/stdout

bhyvectl

libvmmapi

3. Destroy VM
instance

mmap/ioctl

vmm.ko

• All VT-x features only accessible in kernel
mode, vmm.ko handles it	

• Most important work of vmm.ko is CPU
mode switching between hypervisor/guest	

• Provides interface for userland via /dev/
vmm/${vmname}	

• Each vmm device file contains each VM
instance state

/dev/vmm/${vmname}
interfaces

• create/destroy 
Can create/destroy device file via sysctl  
hw.vmm.create, hw.vmm.destroy	

• read/write/mmap 
Can access guest memory area by standard
syscall (Which means you even can dump
guest memory by dd command)	

• ioctl  
Provides various operations to VM

/dev/vmm/${vmname}
ioctls

• VM_MAP_MEMORY: Maps guest memory
area at requested size	

• VM_SET/GET_REGISTER: Access registers	

• VM_RUN: Run guest machine, until virtual
devices accessed (or some other trap
happened)

libvmmapi

• wrapper library of /dev/vmm operations	

• vm_create(name)→ sysctl(“hw.vmm.create”, name)	

• vm_set_register(reg, val) →
ioctl(VM_SET_REGISTER, reg, val)

bhyveload
• bhyve uses OS loader instead of BIOS/UEFI, to load guest OS	

• FreeBSD bootloader ported to userland: userboot	

• bhyveload runs host OS, to initialize guest OS	

• Once it called, it does following things: 	

• Parse UFS on diskimage, find kernel	

• Load kernel to guest memory area	

• Initialize Page Table	

• Create GDT, IDT, LDT	

• Initialize special registers to get ready for 64bit mode	

• Guest machine can starts from kernel entry point, with 64bit mode

bhyve

• bhyve command is the userland part of the hypervisor	

• It invokes ioctl(VM_RUN) to run GuestOS	

• Emulates virtual devices	

• Provides user interface(no GUI for now)

main loop in bhyve
while (1) {	

ioctl(VM_RUN, &vmexit);	

switch (vmexit.exit_code) {	

case IOPORT_ACCESS:	

	
 emulate_device(vmexit.ioport);  
 …  
}	

}

Q&A?

