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What is bhyve?



What is bhyve?

• bhyve is a hypervisor introduced in FreeBSD	


• Similar to Linux KVM,  runs on host OS	


• BSD License	


• Developed by Peter Grehan and Neel Natu



bhyve features
• Required Intel VT-x and EPT (Nehalem or later)  

AMD support in progress	


• Does not support BIOS/UEFI for now  
UEFI support in progress	


• Minimal device emulation support:  
virtio-blk, virtio-net, COM port + α	


• Supported guest OS:  
FreeBSD/amd64, i386, Linux/x86_64, OpenBSD/amd64



How to use it?

kldload vmm.ko	


/usr/sbin/bhyveload -m ${mem} -d ${disk} ${name}	


/usr/sbin/bhyve -c ${cpus} -m ${mem} \ 
-s 0,hostbridge -s 2,virtio-blk,${disk} \  
-s 3,virtio-net,${tap} -s 31,lpc -l com1,stdio vm0



How to run Linux?

• bhyve OS Loader(/usr/sbin/bhyveload) only supports 
FreeBSD  
You need another OS Loader to support other OSs	


• grub2-bhyve is the solution	


• It’s modified version grub2, runs on host OS (FreeBSD)	


• Can load Linux and OpenBSD	


• Available in ports & pkg!



Virtualization in general



Difference between container 
and hypervisor

• Jail is container 

• It’s virtualize OS environment on kernel level	


• bhyve is hypervisor 

• It virtualizes whole machine	


• Totally different approach



Container
• Process in jail is just a normal 

process for the kernel	


• The kernel do some tricks to 
isolate environments between jails	


• Lightweight, less-overhead	


• Share one kernel with all jails  
→ If the kernel panics, all jails  
will die	


• You cannot install another OS  
(No Windows, No Linux!)
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Hypervisor
• Hypervisor virtualizes a machine	


• From guest OS, it looks like real 
hardware	


• Virtual machine is a normal 
process for host OS	


• Does not share kernel, it is 
completely isolated	


• You can run Full OS inside of 
the VM → Windows! Linux!
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How hypervisor virtualize 
machine?

• To make complete virtual machine, you need to 
virtualize following things:	


• CPU	


• Memory (Address Space)	


• I/O



CPU Virtualization:  
Emulate entire CPU?

• Like QEMU	


• You can emulate the entire CPU operation on a normal process	


• Very slow, not a really useful choice for virtualization

QEMU mov   dx,3FBh
mov   al,128
out   dx,al
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CPU Virtualization:	

Direct execution?

• You want run guest instructions directly on a real 
CPU since you are virtualizing x86 on x86	


• You need to avoid executing some instructions which 
modify system global state, or perform I/O (called 
sensitive instructions)	


• If you execute these instructions on a real CPU, it 
may break host OS state such as directly accessing 
a HW device



Perform I/O on VM

• You need to avoid access to real HW from VM	


• Need to prevent execution of the instruction
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Perform IO on VM

• You can trap them by executing in lower privileged mode	


• However, on x86, there are some instructions which are impossible to trap  
because these are nonprivileged instructions
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Software techniques to 
virtualize x86

• Binary translation (old VMware): interpret & modify 
guest OS’s instructions on-the-fly  
→ Runs fast, but implementation is very complex	


• Paravirtualization (old Xen): Modify guest OS for  
the hypervisor  
→ Runs fast, but is impossible to run unmodified OS’s	


• We want an easier & better solution  
→ HW assisted virtualization!



Hardware assisted 
virtualization(Intel VT-x)

• New CPU mode:  
VMX root mode (hypervisor) / VMX non-root mode (guest)	


• If some event needs to emulate in the hypervisor,  
CPU stops guest, exit to hypervisor → VMExit	


• You don’t need complex software techniques 
You don’t have to modify the guest OS
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Memory Virtualization

• If you run guest OS natively, memory address translation become problematic	


• If GuestB loads Page table A, virtual page 1 translate to Host physical page 1 
but you meant Host physical page 5
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Shadow Paging

• Trap page table loading/modifying, create “Shadow Page Table”, 
tell physical page number to the MMU	


• A software trick that works well, but is slow
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Nested Paging (Intel EPT)

• HW assisted memory virtualization!	


• You will have Guest physical : Host physical translation table	


• MMU translates address by two step (Nested)
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I/O Virtualization

• To run unmodified OSs, you’ll need to emulate all 
devices what you have on the real hardware	


• SATA, NIC(e1000), USB(ehci), VGA(Cirrus), 
Interrupt controller(LAPIC, IO-APIC), 
Clock(HPET), COM port…	


• Emulating real devices is not very fast because it 
causes lot of VMExits, not ideal for for virtualization



Paravirtual I/O

• Virtual I/O device is designed for VM use	


• Much faster than emulating real devices	


• Required device driver on guest OS	


• De-facto standard: virtio-blk, virtio-net



PCI Device passthrough

• If you attach a real HW device on a VM, you will have a problem with DMA	


• Because the device requires physical address for DMA but the guest OS 
doesn’t know the Host physical address	


• Address translator for the devices: IOMMU(Intel VT-d) 

• Translates guest physical to host physical using a translation table
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bhyve internals



How bhyve virtualize machine?

• CPU:  HW-assisted virtualization (Intel VT-x)	


• Memory: HW-assisted memory virtualization (Intel 
EPT)	


• IO: virtio, PCI passthrough, +α	


• Uses HW assisted features



bhyve overview
• bhyveload: loads 

guest OS	


• bhyve: userland part of 
Hypervisor, emulates 
devices	


• bhyvectl: a management 
tool	


• libvmmapi: userland API	


• vmm.ko: kernel part of 
Hypervisor
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vmm.ko

• All VT-x features only accessible in kernel 
mode, vmm.ko handles it	


• Most important work of vmm.ko is CPU 
mode switching between hypervisor/guest	


• Provides interface for userland via /dev/
vmm/${vmname}	


• Each vmm device file contains each VM 
instance state



/dev/vmm/${vmname} 
interfaces

• create/destroy 
Can create/destroy device file via sysctl  
hw.vmm.create, hw.vmm.destroy	


• read/write/mmap 
Can access guest memory area by standard 
syscall (Which means you even can dump 
guest memory by dd command)	


• ioctl  
Provides various operations to VM



/dev/vmm/${vmname} 
ioctls

• VM_MAP_MEMORY:  Maps guest memory 
area at requested size	


• VM_SET/GET_REGISTER:  Access registers	


• VM_RUN: Run guest machine, until virtual 
devices accessed (or some other trap 
happened)



libvmmapi

• wrapper library of /dev/vmm operations	


• vm_create(name)→ sysctl(“hw.vmm.create”, name)	


• vm_set_register(reg, val) → 
ioctl(VM_SET_REGISTER, reg, val)



bhyveload
• bhyve uses OS loader instead of BIOS/UEFI, to load guest OS	


• FreeBSD bootloader ported to userland: userboot	


• bhyveload runs host OS, to initialize guest OS	


• Once it called, it does following things: 	


• Parse UFS on diskimage, find kernel	


• Load kernel to guest memory area	


• Initialize Page Table	


• Create GDT, IDT, LDT	


• Initialize special registers to get ready for 64bit mode	


• Guest machine can starts from kernel entry point, with 64bit mode



bhyve

• bhyve command is the userland part of the hypervisor	


• It invokes ioctl(VM_RUN) to run GuestOS	


• Emulates virtual devices	


• Provides user interface(no GUI for now)



main loop in bhyve
while (1) {	


ioctl(VM_RUN, &vmexit);	


switch (vmexit.exit_code) {	


case IOPORT_ACCESS:	


	
 emulate_device(vmexit.ioport);  
   …  
}	


}



Q&A?


