Porting bhyve on ARM

Mihai Carabas, Peter Grehan
{mihai,grehan}@freebsd.org

[
d FreeBSD

bhyvecon Tokyo 2016 - The BSD Hypervisor Conference
Tokyo University of Science
Tokyo, Japan
March 11th, 2016

Y <72
d FreeBSD

About me

» University POLITEHNICA of Bucharest
» PhD Student: virtualization on embedded devices
» Teaching Assistant: operating systems, systems architecture,
networks

About me

» University POLITEHNICA of Bucharest

» PhD Student: virtualization on embedded devices
» Teaching Assistant: operating systems, systems architecture,
networks

» BSD world

» DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for
vkernels - 2013

» FreeBSD - bhyve: instruction caching - 2014, porting bhyve on
ARM - 2015 (and present)

[=,
d FreeBSD

About

me

University POLITEHNICA of Bucharest

» PhD Student: virtualization on embedded devices
» Teaching Assistant: operating systems, systems architecture,
networks

BSD world

» DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for
vkernels - 2013

» FreeBSD - bhyve: instruction caching - 2014, porting bhyve on
ARM - 2015 (and present)

Promoting bhyve through some diploma and master projects
related to bhyve (e.g. ATA emulation)

Coordinating these diploma and master projects

[=,
d FreeBSD

Hardware Assisted Virtualization

> a new CPU privilege level
» on Intel/AMD: extends the current kernel mode
(root/non-root)
» on ARM: a brand new level called Hyp-mode

Y <72
d FreeBSD

Hardware Assisted Virtualization

> a new CPU privilege level

» on Intel/AMD: extends the current kernel mode
(root/non-root)
» on ARM: a brand new level called Hyp-mode

» Type-2 hypervisor on ARM is more difficult to achieve

> have to rewrite significant parts of the base OS to use the new
registers
» even then you can't run userspace apps directly over it

[=,
d FreeBSD

Type-2 hypervisor on ARM

> We need to leverage the FreeBSD management mechanisms

» Don't want to write a full hypervisor from scratch

Type-2 hypervisor on ARM

» We need to leverage the FreeBSD management mechanisms
» Don't want to write a full hypervisor from scratch

» Insert only a small code into Hyp-mode

> bridge between the Host-OS and the hardware
> it's called when doing hypervisor operations

Type-2 hypervisor on ARM

v

We need to leverage the FreeBSD management mechanisms

v

Don't want to write a full hypervisor from scratch
Insert only a small code into Hyp-mode

> bridge between the Host-OS and the hardware
> it's called when doing hypervisor operations

v

v

Other type-2 implementation - KVM
» VirtualOpenSystems did the same thing

Current status work

v

running with bhyve a FreeBSD virtual machine

v

output through a paravirtualized serial console

v

it's getting to starting the init process

v

but the VM is flooded with spurious interrupts

| v,
| FreeBSD

Steps I've taken

» crafted an init code placed in locore

> it jJumps to a routine where it checks if the platform booted in
Hyp-mode

» install some stub exception vector for Hyp-mode

» marks the virtualization available

Steps I've taken (2)

> created a new sys/arm/vmm
» copied the VMM interface from sys/amd64/vmm
» the VMM code should stay in generic
» there is an amount of code still arch dependent
> after stabilizing the ARM implementation we can make a
common interface

¥ FreeBSD

Steps I've taken (2)

> created a new sys/arm/vmm
» copied the VMM interface from sys/amd64/vmm
» the VMM code should stay in generic
» there is an amount of code still arch dependent
> after stabilizing the ARM implementation we can make a
common interface

» created some low-level routines for installing the exception
vector for Hyp-mode
» the most important entry is the Hypervisor one
> it jumps there whenever hyp instruction is called or a VM
raises an exception

[=,
d FreeBSD

How the Host-OS is making hypervisor calls?

> executes the hyp instruction
» first parameter indicates the address of a routine

» in Hyp-mode the code checks that the call came from the
Host-OS

Y <72
d FreeBSD

Memory mapping

» Hyp-mode is basically another address space with its own
mappings

» New translation level (Stage-2 translation) for VM isolation

¥ FreeBSD

Memory mapping

» Hyp-mode is basically another address space with its own
mappings

» New translation level (Stage-2 translation) for VM isolation

» Issue: only LPAE is supported for both translations

» FreeBSD doesn't support LPAE and we cannot leverage on its
memory management

LPAE support

» Implement LPAE support in the VMM code
» Support for 40bit PA

» 3-level pagetables support (other formats are available but I've
simplified the implementation)

LPAE support

» Implement LPAE support in the VMM code

» Support for 40bit PA

» 3-level pagetables support (other formats are available but I've
simplified the implementation)

» Issue: On 32-bit we don't have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

LPAE support

» Implement LPAE support in the VMM code
» Support for 40bit PA

» 3-level pagetables support (other formats are available but I've
simplified the implementation)

» Issue: On 32-bit we don't have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

» Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs

[=,
d FreeBSD

Steps I've taken (3)

» Mapped the hypervisor code at the same address in
Hyp-Mode and in Host-OS
» all the pointers passed between modes needs to be consistent
» note: the Hyp-mode works with the MMU enabled using a
normal stage-1 translation using it's own pagetables

Steps I've taken (3)

» Mapped the hypervisor code at the same address in
Hyp-Mode and in Host-OS
» all the pointers passed between modes needs to be consistent
» note: the Hyp-mode works with the MMU enabled using a
normal stage-1 translation using it's own pagetables

> Implement the low-level code which is doing context switching
between the Host-OS and the VM

» Save and restore the context (e.g. registers, co-proc registers)

[=,
d FreeBSD

Steps I've taken (4)

» Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

Steps I've taken (4)

» Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

» Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

Steps I've taken (4)

» Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

» Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

> Implement MMIO emulation using traps in a Stage-2
translation

Steps I've taken (4)

» Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

» Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

> Implement MMIO emulation using traps in a Stage-2
translation

> Implement the paravirtualized serial console

Steps I've taken (4)

» Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

» Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

> Implement MMIO emulation using traps in a Stage-2
translation

> Implement the paravirtualized serial console

» Started virtualizing interrupts

Interrupt Controller Virtualization

» 2 components: Distributor and CPU Interface

Interrupt Controller Virtualization

» 2 components: Distributor and CPU Interface

» ARM provides a CPU Virtual Interface which can be used
directly by the VM

[Y,
d FreeBSD

Interrupt Controller Virtualization

>

>

2 components: Distributor and CPU Interface

ARM provides a CPU Virtual Interface which can be used
directly by the VM

One needs to virtualize the accesses to the distributor

Interrupt Controller Virtualization

» 2 components: Distributor and CPU Interface

ARM provides a CPU Virtual Interface which can be used
directly by the VM

One needs to virtualize the accesses to the distributor

v

v

Current status:
» mapped CPU Interface over the CPU Virtual Interface

v

¥ FreeBSD

Interrupt Controller Virtualization

» 2 components: Distributor and CPU Interface

ARM provides a CPU Virtual Interface which can be used
directly by the VM

One needs to virtualize the accesses to the distributor

v

v

Current status:

» mapped CPU Interface over the CPU Virtual Interface
» create the Virtual GIC infrastructure in the VMM

v

¥ FreeBSD

Interrupt Controller Virtualization

» 2 components: Distributor and CPU Interface

» ARM provides a CPU Virtual Interface which can be used
directly by the VM

» One needs to virtualize the accesses to the distributor

» Current status:

» mapped CPU Interface over the CPU Virtual Interface
» create the Virtual GIC infrastructure in the VMM
» register the Distributor accesses for in-kernel emulation

[=,
d FreeBSD

Interrupt Controller Virtualization

v

v

v

2 components: Distributor and CPU Interface

ARM provides a CPU Virtual Interface which can be used
directly by the VM

One needs to virtualize the accesses to the distributor

Current status:

» mapped CPU Interface over the CPU Virtual Interface

v

v

v

create the Virtual GIC infrastructure in the VMM

register the Distributor accesses for in-kernel emulation

the VM passes the GIC initialization and goes further but ends
up with some spurious interrupts due

[=,
d FreeBSD

Interrupt Controller Virtualization

v

v

v

2 components: Distributor and CPU Interface

ARM provides a CPU Virtual Interface which can be used
directly by the VM

One needs to virtualize the accesses to the distributor

Current status:
» mapped CPU Interface over the CPU Virtual Interface

v

v

v

create the Virtual GIC infrastructure in the VMM

register the Distributor accesses for in-kernel emulation

the VM passes the GIC initialization and goes further but ends
up with some spurious interrupts due

still searching the cause of it (probably a mis configuration in
the GICH_* registers)

[=,
d FreeBSD

Timer virtualization

» For now we have two unused timers (SP804) that I've
mapped directly to the guest

Y g
| FreeBSD

Timer virtualization

» For now we have two unused timers (SP804) that I've
mapped directly to the guest

» Expose the generic timer to the guest

Y g
| FreeBSD

Development platform for bhyve ARM

» FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

Y
d FreeBSD

Development platform for bhyve ARM

» FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

» Running bhyve ARM on a real hardware platform

» WIP - running bhyve ARM on Samsung Exynos 5250 - it get
stuck in the crafted init code

Next steps

» Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

Next steps

» Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

» Emulate devices (at least the serial console and a disk)

§ FreeBSD

Next steps

» Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

» Emulate devices (at least the serial console and a disk)
» Run multiple bhyve VMs

§ FreeBSD

Next steps

v

Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

v

Emulate devices (at least the serial console and a disk)
Run multiple bhyve VMs
» Try to run Linux as a guest OS on bhyve ARM

v

@b rccnsD

Next steps

» Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

» Emulate devices (at least the serial console and a disk)
» Run multiple bhyve VMs

» Try to run Linux as a guest OS on bhyve ARM

» Unify the interface of the VMM (amd64/arm)

Next steps

» Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

» Emulate devices (at least the serial console and a disk)
» Run multiple bhyve VMs

» Try to run Linux as a guest OS on bhyve ARM

» Unify the interface of the VMM (amd64/arm)

» Porting bhyve ARM to an ARMv8 platform

[=,
d FreeBSD

Conclusions

v

Porting bhyve on ARM showed that the VMM interface
design almost fits our needs

The VMM still has some arch dependent code

Lack of the LPAE in the FreeBSD base (hard-wire memory for
VM)

Type-2 hypervisor needs special care on ARM (for now)

v

v

v

Thank you for your attention!
ask questions

[=,
d FreeBSD

