
Porting bhyve on ARM

Mihai Carabas, Peter Grehan
{mihai,grehan}@freebsd.org

bhyvecon Tokyo 2016 - The BSD Hypervisor Conference
Tokyo University of Science

Tokyo, Japan
March 11th, 2016



About me

I University POLITEHNICA of Bucharest
I PhD Student: virtualization on embedded devices
I Teaching Assistant: operating systems, systems architecture,

networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present)

I Promoting bhyve through some diploma and master projects
related to bhyve (e.g. ATA emulation)

I Coordinating these diploma and master projects



About me

I University POLITEHNICA of Bucharest
I PhD Student: virtualization on embedded devices
I Teaching Assistant: operating systems, systems architecture,

networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present)

I Promoting bhyve through some diploma and master projects
related to bhyve (e.g. ATA emulation)

I Coordinating these diploma and master projects



About me

I University POLITEHNICA of Bucharest
I PhD Student: virtualization on embedded devices
I Teaching Assistant: operating systems, systems architecture,

networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present)

I Promoting bhyve through some diploma and master projects
related to bhyve (e.g. ATA emulation)

I Coordinating these diploma and master projects



Hardware Assisted Virtualization

I a new CPU privilege level
I on Intel/AMD: extends the current kernel mode

(root/non-root)
I on ARM: a brand new level called Hyp-mode

I Type-2 hypervisor on ARM is more difficult to achieve
I have to rewrite significant parts of the base OS to use the new

registers
I even then you can’t run userspace apps directly over it



Hardware Assisted Virtualization

I a new CPU privilege level
I on Intel/AMD: extends the current kernel mode

(root/non-root)
I on ARM: a brand new level called Hyp-mode

I Type-2 hypervisor on ARM is more difficult to achieve
I have to rewrite significant parts of the base OS to use the new

registers
I even then you can’t run userspace apps directly over it



Type-2 hypervisor on ARM

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch

I Insert only a small code into Hyp-mode
I bridge between the Host-OS and the hardware
I it’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing



Type-2 hypervisor on ARM

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch
I Insert only a small code into Hyp-mode

I bridge between the Host-OS and the hardware
I it’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing



Type-2 hypervisor on ARM

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch
I Insert only a small code into Hyp-mode

I bridge between the Host-OS and the hardware
I it’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing



Current status work

I running with bhyve a FreeBSD virtual machine

I output through a paravirtualized serial console

I it’s getting to starting the init process

I but the VM is flooded with spurious interrupts



Steps I’ve taken

I crafted an init code placed in locore
I it jumps to a routine where it checks if the platform booted in

Hyp-mode
I install some stub exception vector for Hyp-mode
I marks the virtualization available



Steps I’ve taken (2)

I created a new sys/arm/vmm

I copied the VMM interface from sys/amd64/vmm
I the VMM code should stay in generic
I there is an amount of code still arch dependent
I after stabilizing the ARM implementation we can make a

common interface

I created some low-level routines for installing the exception
vector for Hyp-mode

I the most important entry is the Hypervisor one
I it jumps there whenever hyp instruction is called or a VM

raises an exception



Steps I’ve taken (2)

I created a new sys/arm/vmm

I copied the VMM interface from sys/amd64/vmm
I the VMM code should stay in generic
I there is an amount of code still arch dependent
I after stabilizing the ARM implementation we can make a

common interface

I created some low-level routines for installing the exception
vector for Hyp-mode

I the most important entry is the Hypervisor one
I it jumps there whenever hyp instruction is called or a VM

raises an exception



How the Host-OS is making hypervisor calls?

I executes the hyp instruction

I first parameter indicates the address of a routine

I in Hyp-mode the code checks that the call came from the
Host-OS



Memory mapping

I Hyp-mode is basically another address space with its own
mappings

I New translation level (Stage-2 translation) for VM isolation

I Issue: only LPAE is supported for both translations

I FreeBSD doesn’t support LPAE and we cannot leverage on its
memory management



Memory mapping

I Hyp-mode is basically another address space with its own
mappings

I New translation level (Stage-2 translation) for VM isolation

I Issue: only LPAE is supported for both translations

I FreeBSD doesn’t support LPAE and we cannot leverage on its
memory management



LPAE support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs



LPAE support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs



LPAE support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs



Steps I’ve taken (3)

I Mapped the hypervisor code at the same address in
Hyp-Mode and in Host-OS

I all the pointers passed between modes needs to be consistent
I note: the Hyp-mode works with the MMU enabled using a

normal stage-1 translation using it’s own pagetables

I Implement the low-level code which is doing context switching
between the Host-OS and the VM

I Save and restore the context (e.g. registers, co-proc registers)



Steps I’ve taken (3)

I Mapped the hypervisor code at the same address in
Hyp-Mode and in Host-OS

I all the pointers passed between modes needs to be consistent
I note: the Hyp-mode works with the MMU enabled using a

normal stage-1 translation using it’s own pagetables

I Implement the low-level code which is doing context switching
between the Host-OS and the VM

I Save and restore the context (e.g. registers, co-proc registers)



Steps I’ve taken (4)

I Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

I Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console

I Started virtualizing interrupts



Steps I’ve taken (4)

I Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

I Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console

I Started virtualizing interrupts



Steps I’ve taken (4)

I Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

I Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console

I Started virtualizing interrupts



Steps I’ve taken (4)

I Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

I Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console

I Started virtualizing interrupts



Steps I’ve taken (4)

I Copied the libvmmapi, bhyveload and bhyve code creating
new user-space tools for ARM

I Crafted bhyveloadarm to map a Guest-OS memory and load
its image (binary)

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console

I Started virtualizing interrupts



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor

I Current status:
I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface

I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM

I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation

I the VM passes the GIC initialization and goes further but ends
up with some spurious interrupts due

I still searching the cause of it (probably a mis configuration in
the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due

I still searching the cause of it (probably a mis configuration in
the GICH * registers)



Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I One needs to virtualize the accesses to the distributor
I Current status:

I mapped CPU Interface over the CPU Virtual Interface
I create the Virtual GIC infrastructure in the VMM
I register the Distributor accesses for in-kernel emulation
I the VM passes the GIC initialization and goes further but ends

up with some spurious interrupts due
I still searching the cause of it (probably a mis configuration in

the GICH * registers)



Timer virtualization

I For now we have two unused timers (SP804) that I’ve
mapped directly to the guest

I Expose the generic timer to the guest



Timer virtualization

I For now we have two unused timers (SP804) that I’ve
mapped directly to the guest

I Expose the generic timer to the guest



Development platform for bhyve ARM

I FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

I Running bhyve ARM on a real hardware platform

I WIP - running bhyve ARM on Samsung Exynos 5250 - it get
stuck in the crafted init code



Development platform for bhyve ARM

I FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

I Running bhyve ARM on a real hardware platform

I WIP - running bhyve ARM on Samsung Exynos 5250 - it get
stuck in the crafted init code



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Next steps

I Add SMP support to the VMM code (basically execute the
init function all CPUs and add some locks)

I Emulate devices (at least the serial console and a disk)

I Run multiple bhyve VMs

I Try to run Linux as a guest OS on bhyve ARM

I Unify the interface of the VMM (amd64/arm)

I Porting bhyve ARM to an ARMv8 platform



Conclusions

I Porting bhyve on ARM showed that the VMM interface
design almost fits our needs

I The VMM still has some arch dependent code

I Lack of the LPAE in the FreeBSD base (hard-wire memory for
VM)

I Type-2 hypervisor needs special care on ARM (for now)

Thank you for your attention!
ask questions


