
Building a virtualisation appliance
with FreeBSD/bhyve/OpenZFS
Jason Tubnor

ICT Senior Security Lead

Introduction

 Building an virtualisation appliance for use within a NGO/NFP Australian Health
Sector

 About Me

 Latrobe Community Health Service (LCHS)

 Background

 Problem

 Concept

 Production

 Reiteration

About Me

 26 years of IT experience

 Introduced to Open Source in the mid 90’s

 Discovered OpenBSD in 2000

 A user and advocate of OpenBSD and FreeBSD

 Life outside of computers:

 Ultra endurance gravel cycling

Latrobe Community Health Service (LCHS)

 Originally a Gippsland based NFP/NGO health service

 ICT manages 900+ users

 Servicing 51 sites across Victoria, Australia

 Covering ~230,000km2

 Roughly the size of Laos in Aisa or Minnesota in USA

 “Better health, Better lifestyles, Stronger communities”

Background

 First half of 2016 awarded contract to provide NDIS services

 Mid 2016 – deployment of initial infrastructure

 MPLS connection

 L3 switch gear

 ESXi host running a Windows Server 2016 for printing services

Background – cont.

 Staff number grew

 We hit capacity constraints on the managed MPLS network

 An offloading guest was added to the ESXi host

 VPN traffic could be offloaded from the main network

 Using cheaply available ISP internet connection

Problem

 Taking stock of the lessons learned in the first phase

 We needed to come up with a reproducible device

 Device required to be durable in harsh conditions

 Budget constraints/cost savings

 Licensing model

 Phase 2 was already being negotiated so a solution was required quickly

Concept

 bhyve [FreeBSD] was working extremely well in testing

 Excellent hardware support

 Liberally licensed

 OpenZFS

 Simplistic

 Small footprint for a type 2 hypervisor

 Hardware discovery phase

 FreeBSD

 Required virtualisation components in CPU

Concept – cont.

Concept – cont.

 SuperMicro SuperServer 5019A-FTN4 was chosen

 4 x 1Gb Ethernet ports

 Low powered

 Ran cool without relying on moving fans

 Storage (internal)

 2 x 240GB Intel Enterprise SSDs

 OpenZFS used to mirror drives

Concept – cont.

 FreeBSD 11.0

 Easy to maintain and report bugs

 Patch support and delivery provided by the FreeBSD project

 UEFI support for Windows Server 2016

 5 year Long Term Support (LTS)

 Guest Management

 chyves (a fork of iohyve)

Concept – cont.

 Guests

 OpenBSD 6.1 using grub-bhyve

 Windows Server 2016 using UEFI

 Networking

 Best security – VLAN on host

 Main igb0 port a parent of multiple
VLANs

 Secondary port bridged to OpenBSD
guest for offloading and/or VPN
activites

Concept – cont.

 OpenZFS

 Each guest had it own zvol for storage

 Snapshots provide a fail-safe way to rollback in the event of a bad guest upgrade

 Ports/Packages installed:

 openssh-portable

 openntpd

 grub2-bhyve

 chyves

 smartmontools

 aria2

 zfsnap2

 zxfer

Concept – cont.

 Configuration:

 /etc/rc.conf VLAN setup for bridging VLANs to guests:

ifconfig_igb0="up“
ifconfig_igb1="up“
vlans_igb0="vlan10 vlan11 vlan12 vlan13 vlan14“
create_args_vlan10="vlan 10 up“
create_args_vlan11="vlan 11 up“
create_args_vlan12="vlan 12 up“
create_args_vlan13="vlan 13 up“
create_args_vlan14="vlan 14 up“
ifconfig_vlan10="inet 10.1.1.20 netmask 255.255.255.0“
defaultrouter="10.1.1.1"

Concept – cont.

 Guest installation

 OpenBSD was installed individually, not from a master image

 Windows Server 2016 was installed from a maintained master image

 21GB in size

 fetch -o - https://mirror.in.lchsict.com/pub/ndia/Win2k16-Server-20190121.zvol | zfs recv -Fv
tank/vm/windowshost/disk0

 Installation would take about 4 minutes

Concept – cont.

 Problems

 chyves

 Couldn’t handle boot priority when different boot methods were used

 Required hacking the chyves library scripts depending on the OpenBSD install

 Used a complex dataset layout

 Boot method

 Having two methods for starting guests was overly complex

 Console access for the OpenBSD guest was difficult for a non-UNIX admin

 The UEFI bootloader in ports at the time brought in compilers and other non-essential tools that
should not exist on the host

Concept – cont.

 Problems – cont.

 FreeBSD

 Issues with network interfaces (required -txcsum -tso6 -tso4 -lro in /etc/rc.conf file) 11.0

 hw.vmm.topology.cores_per_package="8“ and hw.vmm.topology.threads_per_core="1“ were
required in /etc/loader.conf for guests with CPU licensing issues.

Production

 Problems were not a show stopper

 In its current state the concept device provided:

 90% usability

 100% functionality

 Project Point.5 had management commitment

 Went ahead and purchased inventory for V1.0 rollout

 Re-assess and refactor tooling as appliance matures to improve usability

Production – cont.

Version 1.0
 Supermicro SuperServer 5019A-FTN4

 25 units

 FreeBSD 11.0

 chyves

 grub-bhyve - OpenBSD

 UEFI – Windows Server 2016

Production – cont.

 Appliances were spun up and shipped for install

 No issues on deployment

 freebsd-update fetch/install around guests wasn’t an issue

 VMWare ESXi host was even swapped out because of hypervisor support issues

Production – cont.

Installation
 Offload and full IKEv2 VPN editions

cabled the same

 FTTP NTD, VDSL or ADSL modems
attached to igb1

 All traffic VLAN trunked between
appliance and switch

Reiteration

 Faster hardware required where environmental conditionals allowed

 All UEFI – no multiple boot loaders

 Simplistic management for all Administrators

 Address VNC console issues with bhyve/UEFI/OpenBSD

 Continue using other tools and workflows as per the original concept

Reiteration – cont.

Version 2.0
 Supermicro SuperServer 5019S-ML

 11 units

 FreeBSD 11.1 and 11.2

 vm-bhyve

 OpenBSD and Windows Server 2016
both use UEFI

 Two different versions – thin guest and
volume storage

FAQ

 Even if there were support issues with ESXi why chose bhyve?

 VMWare ESXi would cause random crashing on OpenBSD guests usually when OpenBSD
was under heavy IKEv2/ipcomp load or the ingestion of a large route table. bhyve never
exhibits these issues with some units having very long uptimes.

 Why was vm-bhyve used?

 Out of the box, vm-bhyve has worked faultlessly. Where there were gaps of missing
features, they have been quickly addressed. The next ports release of vm-bhyve should see
the introduction in detection of the media invoked by the installer – needed for OpenBSD.

 Are you planning to uplift the appliance to FreeBSD 12?

 No. Currently FreeBSD does not have a LTS release outside of the 11.x branch. There was
also sufficient breakage in the 12.0-RELEASE when testing which has also contributed.

Conclusion

 While it meets the business need and solved our problem, it exceeded expections

 Technically it is termed a type 2 hypervisor, however, we consider the appliance to be
a type 1. Small footprint only guests and essential tasks running on the host

 Rock solid reliability

 Compatible with a wide range of guests (as long as UEFI is supported)

 Fast and flexible

 … on the horizon

A Special Thanks

 FreeBSD Project

 Michael Dexter

 Peter Grehan

 Rodney Grimes

 ….. and all those that work tirelessly on open source software

Donate

 You too can help:

 FreeBSD Foundation https://www.freebsdfoundation.org/

Q & A

Thank You

 Jason Tubnor

 Email: jason.tubnor@lchs.com.au

 Email: jason@tubnor.net

 Twitter: @Tubsta

