Introduction to Qubes OS

bhyvecon Tokyo 2014

@ntddk
Self-introduction

- Yuma Kurogome(@ntddd)
- Takeda Lab @ KEIO Univ.
- Researching about security in low-layer
- Participant of Security Camp '11, '13
- CTF player @ EpsilonDelta
What is Qubes OS?
What is Qubes OS?

- **Secure VM** developing by Invisible Things Lab
- Security by **Isolation**
- Open Source(GPL v2)

- Based on **Xen**
 - So today I don't speak about bhyve
 - Wish I could supply some inspiration for you!
Invisible Things Lab
Invisible Things Lab

• Founded by Joanna Rutkowska in 2007
 – Who forced Citrix to publish souces of XenClient
 – Published Blue Pill [SyScan'06] when she were in COSEINC

• Blue Pill
 – VT based rootkit (hypervisor)

• Previous rootkit were on Ring 0
 – Hooking System Call
 – Altering Kernel Structure
 – So we can detect it
Invisible Things Lab

• VT based rootkit were on Ring -1
 - So we can hardly detect it *after infection*
 - For now, VT based rootkit is not serious threat
Invisible Things Lab

• They had been researched about
 - rootkit
 - SMM(System Management Mode)
 - Intel TXT(Trusted Execution Technology)

• Now they are developing Secure VM focused on mechanism of Xen
Well...

What's the difference between Xen and KVM?
Review: difference between Xen and KVM

- Virtualization methods
- Intrrrupt
- Memory mapping
Review: difference between Xen and KVM

• Xen
 - Para-Virtualization
 - Full-Virtualization by Intel VT
Review: difference between Xen and KVM

- KVM
 - Full-Virtualization
 - Para-Virtualization by virtio
Review: difference between Xen and KVM

- Virtualization methods
 - Para-Virtualization
 - Modify OS for virtualized environment
 - No need of full hardware emulation
 - Full-Virtualization
 - No need of modifying OS
- Interrupt
 - Xen uses event channel
 - KVM uses MSI(-X)
Review: difference between Xen and KVM

- Memory mapping
 - KVM
 Gest-Physical memory space is part of host-virtual memory space of QEMU
 - Xen
 Mapping Gest-Physical memory space On demand

- Both use HW-assisted virtualization
 - Intel VT, AMD-V
Well... What is Intel VT?
Review: Intel VT

- Handling sensitive instructions
 - How to emulate it?
 - Tired to rewriting instrctuions by hand
Review: Intel VT(VMX)

1. Load some settings to VMCS
2. Set CPU to VMCS
3. VMLAUNCH → VMEntry, Enter VMX non-root mode (Guest mode)
4. Execute guest environment
5. Cause of trap → VMExit, Enter VMX root mode
6. Check VMExit reasons, emulation
7. VMRESUME → VMEntry, Enter VMX non-root mode → 4
Review: Intel VT(VMX)

• What is VMCS?
 - Virtual Machine Control Structure
 • Program Counter
 • Register
 • VM
 • What to trap
Review: Intel VT(EPT)

- Simplifying Paging
 - Tired to twice translation
 - Shadow Page Table

- EPT
 - Extended Page Table
 - Address translation by HW
 - Reduction of Overhead
Review: Intel VT(EPT)

- We can easily make VMM using VT! → KVM
- Xen...
 - Need of HyperCall
 - Full-Virtualization by VT
Xen Virtualization

- Xen has a Dom0 (host) and some DomU (guest)
Xen Virtualization

- Xen hypervisor execute Dom0 before DomU
- Dom0 manages other DomU
 - Only Privilege Domain is allowed to access all HW
 - DomU ask Dom0 to HW access via Backend/Frontend Driver

- Qubes OS apply this architecture to security
Concept of Qubes OS
Desktop Environment

- Qubes OS want to provide strong security to desktop environment

- Spreadsheet with your company's data
- Mail Client
- Web Browser
Desktop Environment

- People use different applications there

- Spreadsheet with your company's data
- Mail Client
- Web Browser
- Game
Desktop Environment

- If this game was malware?

- Spreadsheet with your company’s data
- Mail Client
- Web Browser
- Game

Information leakage
Desktop Environment

• If the Web Browser has vulnerability?

- Spreadsheet with your company's data
- Mail Client

Information leakage
Web Browser
It's Painful!
Two Approaches

• Security by Correctness
• Security by Isolation
Security by Correctness

- Code Auditing
- Developers education
 - Microsoft Security Development Lifecycle
- Testing
 - Fuzzing
- “Safe” Programming Language

- It doesn't work in practice!
Security by Isolation

- We want the OS to provide isolation between various apps
- If some of them get compromised...
Security by Isolation

- We want to even “decompose” some apps...
- e.g. Web Browser
 - Internal Systems
 - Shopping
 - News
 - Googling
Security by Isolation

- Isolation provided by OSes are not enough?
 - Address space isolation
 - User accounts isolation
 - ACL
 - Kernel/User space separation
 - chroot
 - systrace
 - SELinux
 - Secure level of BSD

- They don't work in practice!
Security by Isolation

- Monolithic kernels are buggy!
- Hundreds of 3rd-party drivers cannot be made secure!

“One bug to rule them all!”
Then, Qubes OS
Virtualization for rescue!
Melits of virtualization

- Bug(vuln) is proportional to LOC[SOSP01]
- Linux: ten of millions LOC!
- Bare-metal hypervisor: 100k~300k LOC only!
Conceptual Diagram

- App Domain
- Strage Domain
- Network Domain
- Domain 0

Come true Isolation!!!
Dom0

- Provides secure environment and manager
- Dom0 doesn't contain Network function and Storage function
- Only 25k LOC!!!!!!!
Strage Domain

- Non-privileged VM
- Only support Storage function
Network Domain

- Non-privileged VM
- Only support Network function
AppVM

• Main Qubes building blocks (cubes)
• Hosts user applications
• We can create VM (Domain) depending on their Use
 – Work
 – Shopping
 – Personal
• Domains are isolated each other → SECURE!
• Created by Template VM (Read Only)
AppVM

• Disposable VM
 - Only supports ONE application
 - If compromised, there are no informations

• Lightweight
 - 400MB per VM

• Centrally Updatable

• Each app gets a label (VM name + color frame) that is applied by the Window Manager running in Dom0
AppVM

ハイパーバイザによるIsolation
Next Generation Long Range Drone Helicopter

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

A convenient way to express FSPL is in terms of dB:

\[
FSPL(dB) = 10 \log_{10} \left(\frac{4\pi}{c} df \right)^2
= 20 \log_{10} \left(\frac{4\pi}{c} df \right)
= 20 \log_{10}(d) + 20 \log_{10}(f) + 20 \log_{10} \left(\frac{4\pi}{c} \right)
= 20 \log_{10}(d) + 20 \log_{10}(f) - 147.55
\]

\[d\] is the speed of light in a vacuum, 2.99792458 x 10^8 metres per second.
This equation is only accurate in the far field where spherical spreading can be assumed; it does not hold close to the transmitter.

Free-space path loss in decibels

http://wiki.qubes-os.org/trac/attachment/wiki/QubesScreenshots/r2b2-kde-three-domains-at-work.png
VM Protection

• Research about VM Protections
• Overshadow[ASPLO08]
 - Get context of Guest OS from VMM
 - Encrypt pages at memory access
 - Show process to not-encrypted memory
 - Need original loader
• SP3[Vee08]
 - Process memory encryption from VMM
 - Set access control per page
 - Has both encrypted page and not-encrypted page
 → Reduction of Overhead
VM Protection

- Qubes OS uses Intel VT-d and Intel TXT Protecting VM
- DMA Protection
 - Direct Memory Access
 - R/W memory from HW
 - No need of CPU
DMA Virtualization by Intel VT-d

1. HW → DMA Request
2. DMA Remapping Engine refers to Device Assignment Structure
3. Get Address Translation Structure
DMA Virtualization by Intel VT-d

- Prevents access from the address range other than the VM at address translation
- At early boot sequence before VT-d initialized, Intel TXT protects VM
Intel TXT

• Trust
 – All work as expected!
 – **Identity** and **Measurement**

• Establish Trust by RTM(Root of Trust for Measurement)
 – Reliable engine makes a measurement of integrity
 – Root of Trust → Chain of Trust
Intel TXT

- RTM
 - RTM cannot measures itself
- Static RTM
 - RTM is firmware
 - Building Chain of Trust from booting
- Dynamic RTM
 - RTM is GETSEC[SENDER] instruction
 - Building Chain of Trust from executing instruction
 - SENTER enable DMA protection so we can protect VM!
 “Kill two birds with one stone”
Intel TXT

• Intel TXT uses both SRTM and DRTM
• BIOS(chip) → (SRTM) → bootloader → (SRTM) → os → (DRTM) → hypervisor

(thx @yuzuhara)
Cross-VM

- Qubes OS has some Cross-VM functions
 - Clipboard sharing
 - File transfer via virtual disk
- Cross VM vulnerability is easily targeted
- Insert rootkit at LiveMigration[BlackHat DC08]
- Cross VM Side Channel Attack[CCS12]
 - Estimate the access from another VM from response when malicious VM access physical cache continuously
 - Might steal the key
Filesystem
Summaly

- Domain oriented VM
- Creates Xen's VM per use
- Seamless operation by GUI virtualization
- DMA protection by Intel VT-d
- Strage protection by Intel TXT
- Filesystem protection by VM-specific key
See qubes-os.org
Q&A?
Thank you!